Tetrahedron 64 (2008) 10706-10713

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Chromium(II) chloride-promoted reductive β -elimination of 1,1-dihalo alditols. Synthesis of highly functionalized alk-1-enyl halides

Elisa I. León*, Nieves R. Paz, Concepción Riesco-Fagundo, Ernesto Suárez*

Instituto de Productos Naturales y Agrobiología del C.S.I.C., Carretera de La Esperanza 3, 38206-La Laguna, Tenerife, Spain

ARTICLE INFO

Article history Received 31 July 2008 Received in revised form 28 August 2008 Accepted 29 August 2008 Available online 10 September 2008

ABSTRACT

A new general synthetic route to obtain highly functionalized (Z)- and (E)-alk-1-enyl halides is described, where the halogen can be indistinctly F, Cl, Br, and I. The procedure involves CrCl₂-promoted reductive elimination of β -O-substituted gem-dihalo alditols easily accessible from carbohydrates. The simplicity and mildness of the reaction conditions and their compatibility with different functional groups increase the synthetic potential of this methodology.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Alk-1-enyl halides are useful synthetic intermediates¹ and probably the most widely used organic electrophiles in the Stille, Suzuki, Nozaki-Hiyama-Kishi, and Heck cross-coupling reactions.² Moreover, new strategic reactions are emerging for C-N and C-O bond formation that employ this type of compounds as starting materials and their importance as valuable synthons is increasing accordingly.³ The synthetic utility of these reactions owes a great deal to the ease with which the coupling partners can be synthesized.

There are many methods for obtaining alk-1-envl halides, but very few of them are mild enough to be used with highly functionalized or sensitive substrates.⁴ An overview reveals few general procedures and these usually have to be optimized for each class of vinyl halides. Elimination reactions are well known among the earliest routes toward vinyl halides, especially base-promoted dehydrohalogenation of vicinal or geminal dihalo compounds.⁵ Zinc-promoted reductive elimination of β-heterosubstituted polyhalogenated compounds have also been used but to a lesser extent.⁶ Some years ago the preparation of vinyl halides by a stereoselective reductive β-elimination of non-fluorinated O-acetylated gem-dihaloalkanols with samarium(II) iodide was reported.⁷ Recent advances, for instance, involve the use of transition-metal reagents in the reductive dehalogenation of gem-trihalo compounds promoted by CrCl₂ or CuCl/2,2'-bipyridine.⁸

Herein we describe a facile and general synthetic route to chiral polyhydroxylated alk-1-enyl halides 4 by chromium(II)mediated reductive β -elimination reaction of 1,1-dihalo alditols 3 (Scheme 1). These gem-dihalo derivatives are easily available from glycals 1 by an advantageous two-step methodology previously developed in our laboratory,⁹ with the alkoxyl radical β -fragmentation (ARF) reaction of 2-deoxy-2-halo pyranoses 2 as the key step.

RO

RO

носо

RO

2

RO

2. Results and discussion

RO

ÓR

Treatment of β-O-acetyl or β-O-benzyl-1,1-haloiodo alditols with an excess of chromium(II) chloride as reducing agent has allowed the formation of highly functionalized vinyl iodides, vinyl bromides, vinyl chlorides, and vinyl fluorides as summarized in Table 1. As far as we know, no examples of chromium-mediated β -elimination of dihalo compounds have been previously reported.

The reaction proceeds at room temperature in THF with an excess of a preformed complex of CrCl₂ and DMF, since this donor ligand enhances the reductive power of chromium(II),^{11a} to give

Tetrahedror

^{*} Corresponding authors. Tel.: +34 922251004; fax: +34 922260135. E-mail addresses: eila@ipna.csic.es (E.I. León), esuarez@ipna.csic.es (E. Suárez).

^{0040-4020/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.08.100

Table 1 Reductive β -elimination of 1-halo-1-iodo alditols^a

^a Reactions were performed with CrCl₂-DMF in dry THF.

^b Reactions were performed with Sml₂ in dry THF.

^c Vinyl iodide (3–11%) was also obtained.

^d **20***E* contaminated with 20% of **20***Z*.

^e Gal in this case refers to the peracetylated moiety of galactose.

^f **26E** contaminated with 15% of starting material **22**.

(Z)- and (E)-vinyl halides in good to excellent yields but with moderate diastereoselectivity (Table 1).

For the preparation of vinyl fluorides a higher excess of CrCl₂– DMF complex and in general longer reaction time (24 h) were necessary (entries 1, 9, 13, and 17, Table 1). In preliminary experiments we studied different temperature conditions and no effect was observed in the diastereoisomeric ratio. However, yields became lower as the temperature increased.

The reaction is compatible with *O*-acetyl or *O*-benzyl protecting groups present in the structure of all *gem*-haloiodo alditols studied, especially with the sensitive *O*-formyl protecting group. The glycosidic linkage of *O*-acetylated derivatives **25–28** also remains unaffected too. lodides are considerably more reactive than fluorides and chlorides in the reductive elimination reaction. Consequently, vinyl fluorides (entries 1, 9, 13, and 17) and vinyl chlorides (entries 3, 10, 14, and 18) were exclusively obtained. However, this does not appear to be the case for 1-bromo-1-iodo alditols (**7, 15, 23**, and **31**), since bromine was eliminated competitively and the vinyl bromides (entries 5, 11, 15, and 19) were contaminated by small amounts of the corresponding vinyl iodides. In contrast with the fact that vinyl fluorides were obtained with lower yields than the

other vinyl halides from each series of *O*-acetyl-1,1-haloiodo alditols, vinyl fluoride **17** was obtained almost quantitatively from β -*O*-benzyl-1-fluoro-1-iodo alditol **13** (entry 9). This could suggest that the reductive elimination of a β -*O*-benzyl group is the best option when a fluorine atom is present.

In comparison, preformed ¹⁰ Sml₂ was used at room temperature as an alternative reducing agent for the elimination of the β -Oacetyl-1,1-haloiodo alditols **6–8** to obtain vinyl halides **10–12** (entries 4, 6, and 8, Table 1), with higher diastereoselectivity but in somewhat lower yields. Although vinyl fluoride **9** (entry 2) could also be obtained from 1,1-fluoroiodo-alditol **5**, heating to 50 °C was necessary and a notable decrease in yield was observed (entry 2, Table 1). Sml₂ failed to lead to the reductive elimination of β -Obenzylated-1,1-diiodo alditol **16**, which afforded complex mixtures of compounds, even when temperature and amounts of reagent were reduced.

In order to test the scope and generality of our methodology the reaction was examined with other types of *gem*-dihalo alditols as substrates such as *O*-acetyl 1,1-dibromo- and 1,1-bromochloro alditols **37** and **38** (Table 2).^{9b} These were also suitable for the cromium(II)-promoted β -elimination and vinyl bromide **10** and vinyl chloride **11** were formed under the usual conditions with good yields (entries 1 and 2, Table 2).

Similar results were obtained when experiments using *gem*diiodo alditols **39**, **41**, and **44** were carried out. The reaction showed tolerance to other *O*-protecting groups such as benzylidene acetal of **39** and *tert*-butyldimethysilyl of **41** (entries 3 and 4, Table 2). Elimination of this last alditol afforded mixtures of the expected vinyl iodides **42** and their corresponding transesterification products **43**. As can be observed in this case the presence of a cyclic carbonate at the β -position had a decisive influence on the steric course of the elimination, probably due to the conformational restriction introduced, and the diastereoselectivity improved

Table 2 Reductive β-elimination of 1,1-dihalo alditols^a

^a All reactions were performed with CrCl₂-DMF in dry THF.

^b Inseparable mixtures of **42E** with **43E** and **42Z** with **43Z**.

^c Inseparable mixture of isomers.

significantly toward the (E)-isomer (Z/E, 3:7). Reductive elimination of a less substituted *gem*-dihalo alditol **44** afforded vinyl iodide **45**, which may be an alternative chiral synthon when the introduction of only one stereogenic center is required.

Mechanistically, details of the formation of vinyl halides from β -O-substituted *gem*-dihalo additols have vet to be elucidated. The most important chromium-mediated reaction of gem-dihaloalkanes, the *E*-olefination of carbonyl compounds developed by Takai,¹¹ is believed to proceed via a *gem*-dichromium carbenoid (A), which nucleophilically attacks the carbonyl compounds, although a gem-halo-chromium intermediate (B) may be involved (Scheme 2). When we attempted the olefination of hydrocinnamaldehyde using different β-substituted gem-diiodo alditols β -elimination products were exclusively obtained.^{9a} It is probable that initially an oxidative addition of chromium into the C-X bond $(I > Br \gg Cl > F)$ takes place to generate the gem-halo-chromium intermediate (**C**), followed by chromium-induced β -elimination of the oxygenated function at C-2, which must be faster than the possible second reduction toward a geminal dichromium species (Scheme 2).

Scheme 2. Tentative mechanism for $CrCl_2$ -promoted β -elimination of gem-dihalo alditols.

In general, reductive elimination of 1:1 diastereoisomeric mixtures of gem-haloiodo alditols (3:2 for 30 and 31) afforded (Z)- and (E)-vinyl halides with ratios different from those of the starting material. β-Elimination of the different gem-diiodo alditols studied took place with variable diastereoselectivity. The observed stereochemical course can be explained by a low degree of control in the transition state. It is known that stereoselective reactions of gem-trihalogenated compounds promoted by CrCl₂ involve a gem-dihalogenated monochromium intermediate whose conformation is fixed by intramolecular coordination of chromium(III) with an oxygen atom of a β -group.¹² Since gem-dihalo alditols show a high number of oxygenated functions several chromium(III)-oxygen coordinations are feasible and different conformations of the gem-halo-chromium intermediate (C) are possible with the subsequent loss of stereocontrol during the elimination.

3. Conclusion

In summary we have described an efficient and general new methodology to obtain highly functionalized (*Z*)- and (*E*)-vinyl halides by reductive elimination of β -O-acetyl- and β -O-benzyl-1,1-dihalo alditols. The easy accessibility of these starting products from carbohydrates combined with the simplicity and mildness of the elimination conditions and the exceptional tolerance of the CrCl₂ reagent toward different functional groups increase the potential of this method to obtain those valuable synthons. The synthesis of libraries of both (*Z*)- and (*E*)-vinyl halides is of interest for comparative studies in biochemistry as well as in physical organic chemistry, especially for vinyl fluorides since the presence of a fluorine atom modifies their biological activity by altering their physicochemical properties.¹³

4. Experimental section

4.1. General

Melting points were determined with a hot-stage apparatus. Optical rotations were measured at the sodium line at ambient temperature in CHCl₃ solutions. IR spectra were recorded in CHCl₃ solutions unless otherwise stated. NMR spectra were determined at 500 MHz for ¹H, 100.6 MHz for ¹³C, and 376.4 MHz for ¹⁹F in CDCl₃ unless otherwise stated. TMS was used as internal standard for ¹H and ¹³C nuclei, while CCl₃F was used as internal standard for ¹⁹F nucleus. Mass spectra were determined at 70 eV. Merck silica gel 60 PF (0.063–0.2 mm) was used for column chromatography. Circular layers of 1 mm of Merck silica gel 60 PF254 were used on a Chromatotron for centrifugally assisted chromatography. Anhydrous CrCl₂ was purchased from Aldrich. Samarium powder was purchased from Strem. Solvents were analytical grade or were purified by standard procedures prior to use. All reactions involving air- or moisture-sensitive materials were carried out under a nitrogen atmosphere, and the glassware was oven-dried. The spray reagents for TLC analysis were conducted with 0.5% vanillin in H₂SO₄-EtOH (4:1) and further heating until development of color.

4.2. General procedure for the synthesis of vinyl halides with $\mbox{\rm CrCl}_2$

To a suspension of CrCl₂ (4 mmol) in dry THF (8 mL) was added, under nitrogen, dry DMF (4 mmol) and the mixture stirred for 30 min. A solution of the 1,1-dihalo alditol (1 mmol) in THF (10 mL) was then added and the stirring continued at room temperature, for the time specified in the tables. The reaction mixture was poured into water and extracted with EtOAc, the organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by chromatography (hexanes–EtOAc mixtures). For vinyl fluorides **9**, **17**, **25**, and **33**, CrCl₂ (6 mmol) in dry THF (18 mL) and dry DMF (6 mmol) were used.

4.3. General procedure for the synthesis of vinyl halides with Sml₂

A solution of freshly prepared SmI₂ (3 mmol) in dry THF (30 mL) was added dropwise over 30 min, under nitrogen, to a solution of the 1,1-dihalo alditol (1 mmol) in THF (10 mL) at room temperature, with the exception of the fluoride derivative, which was heated to 50 °C. Stirring was continued for the time specified in Table 1, the reaction mixture was treated with 10% aqueous HCl, and after usual work up the residue was purified by chromatography (hexanes-EtOAc mixtures).

4.4. Spectral and analytical data of alk-1-enyl halides

4.4.1. (*Z*)-3,5-*D*i-O-acetyl-1,2-dideoxy-1-fluoro-4-O-formyl-*D*erythro-pent-1-enitol (**9***Z*) and (*E*)-3,5-di-O-acetyl-1,2-dideoxy-1fluoro-4-O-formyl-*D*-erythro-pent-1-enitol (**9***E*)

Yield with CrCl₂ 85%, *Z/E* dr: 1:1. Yield with Sml₂ 52%, *Z/E* dr: 3:1. Compound **9Z**: oil, $[\alpha]_D$ +15.5 (*c* 0.67); IR 1734 cm⁻¹; ¹H NMR δ_H 2.06 (3H, s), 2.07 (3H, s), 4.16 (1H, dd, *J*=12.1, 7.2 Hz), 4.24 (1H, dd, *J*=12.1, 4.1 Hz), 4.93 (1H, ddd, ³*J*_{FH}=39.4 Hz, *J*=9.2, 4.9 Hz), 5.46 (1H, ddd, *J*=7.2, 4.3, 4.1 Hz), 5.93 (1H, dd, *J*=9.2, 4.3 Hz), 6.61 (1H, dd, ²*J*_{FH}=82.1 Hz, *J*=4.9 Hz), 8.10 (1H, s); ¹³C NMR δ_C 20.6 (CH₃), 20.8 (CH₃), 61.6 (CH₂), 64.9 (CH, ³*J*_{FC}=6.5 Hz), 70.7 (CH, ⁴*J*_{FC}=2.2 Hz), 105.3 (CH, ²*J*_{FC}=2.2 Hz), 151.2 (CH, ¹*J*_{FC}=268.6 Hz), 159.8 (CH), 169.4 (C), 170.4 (C); ¹⁹F NMR δ_F –119.8 (dd, ²*J*_{FH}=82.6 Hz, ³*J*_{FH}=41.3 Hz); MS *m/z* (rel intensity) 203 (M⁺-HOCO, 10), 189 (8), 160 (30), 131 (50), 117 (100); HRMS

m/*z* calcd for C₉H₁₂FO₄ 203.0720, found 203.0728. Anal. Calcd for C₁₀H₁₃FO₆: C, 48.39; H, 5.28. Found: C, 48.37; H, 5.10. Compound **9***E*: oil, [α]_D +21.7 (*c* 0.72); IR 1734 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 2.06 (3H, s), 2.07 (3H, s), 4.18 (1H, dd, *J*=12.1, 6.5 Hz), 4.23 (1H, dd, *J*=12.1, 3.9 Hz), 5.36 (3H, m), 6.82 (1H, dd, ²*J*_{FH}=81.3 Hz, *J*=10.3 Hz), 8.09 (1H, s); ¹H NMR (C₆D₆) $\delta_{\rm H}$ 1.54 (3H, s), 1.61 (3H, s), 3.94 (1H, dd, *J*=11.9, 6.2 Hz), 3.98 (1H, dd, *J*=11.9, 3.3 Hz), 5.21 (1H, ddd, ³*J*_{FH}=16.2 Hz, *J*=11.0, 9.1 Hz), 5.31 (2H, m), 6.31 (1H, dd, ²*J*_{FH}=81.5 Hz, *J*=11.0 Hz), 7.42 (1H, s); ¹³C NMR $\delta_{\rm C}$ 20.6 (CH₃), 20.9 (CH₃), 61.5 (CH₂), 67.6 (CH, ³*J*_{FC}=11.4 Hz), 70.7 (CH, ⁴*J*_{FC}=3.2 Hz), 106.3 (CH, ²*J*_{FC}=11.2 Hz), 154.6 (CH, ¹*J*_{FC}=266.6 Hz), 159.7 (CH), 169.5 (C), 170.4 (C); ¹⁹F NMR $\delta_{\rm F}$ -119.5 (dd, ²*J*_{FH}=82.6 Hz, ³*J*_{FH}=13.8 Hz); MS *m*/*z* (rel intensity) 203 (M⁺-HOCO, 18), 189 (7), 160 (32), 130 (40), 117 (100); HRMS *m*/*z* calcd for C₉H₁₂FO₄ 203.0720, found 203.0705. Anal. Calcd for C₁₀H₁₃FO₆: C, 48.39; H, 5.28. Found: C, 48.24; H, 4.98.

4.4.2. (*Z*)-3,5-Di-O-acetyl-1-chloro-1,2-dideoxy-4-O-formyl-Derythro-pent-1-enitol (**10Z**) and (*E*)-3,5-di-O-acetyl-1-chloro-1,2dideoxy-4-O-formyl-D-erythro-pent-1-enitol (**10E**)

Yield with CrCl₂ 92%, Z/E dr: 3:1. Yield with Sml₂ 85%, Z/E dr: 5:1. Compound **10Z**: oil, $[\alpha]_D$ +4.0 (*c* 0.38); IR 1738 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 2.06 (3H, s), 2.08 (3H, s), 4.15 (1H, dd, J=12.2, 7.3 Hz), 4.24 (1H, dd, J=12.1, 4.0 Hz), 5.48 (1H, ddd, J=8.0, 3.9, 3.9 Hz), 5.82 (1H, dd, J=8.7, 7.4 Hz), 5.98 (1H, dd, J=8.9, 4.1 Hz), 6.35 (1H, dd, J=7.4, 0.8 Hz), 8.09 (1H, s); 13 C NMR (125.7 MHz) δ_{C} 20.6 (CH₃), 20.7 (CH₃), 61.6 (CH₂), 67.8 (CH), 70.6 (CH), 124.4 (CH), 125.1 (CH), 159.7 (CH), 169.3 (C), 170.4 (C); MS m/z (rel intensity) 229 (M⁺-Cl, 8), 133 (100); HRMS m/z calcd for C₁₀H₁₃O₆ 229.0712, found 229.0721. Anal. Calcd for C₁₀H₁₃ClO₆: C, 45.38; H, 4.95. Found: C, 45.25; H, 5.02. Compound **10E**: oil, [α]_D +44.1 (c 0.15); IR 1738 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 2.07 (3H, s), 2.08 (3H, s), 4.18 (1H, dd, *J*=12.2, 6.5 Hz), 4.25 (1H, dd, *J*=12.1, 3.9 Hz), 5.36 (1H, ddd, J=5.2, 5.2, 4.7 Hz), 5.48 (1H, dd, J=8.3, 4.7 Hz), 5.93 (1H, dd, J=13.4, 8.3 Hz), 6.42 (1H, dd, J=13.5, 0.8 Hz), 8.09 (1H, s); ¹³C NMR (125.7 MHz) δ_{C} 20.6 (CH₃), 20.8 (CH₃), 61.4 (CH₂), 70.3 (CH), 70.6 (CH), 125.8 (CH), 126.5 (CH), 159.6 (CH), 169.4 (C), 170.4 (C); MS m/z (rel intensity) 229 (M⁺-Cl, 15), 81 (100); HRMS m/z calcd for C₁₀H₁₃O₆ 229.0712, found 229.0713. Anal. Calcd for C₁₀H₁₃ClO₆: C, 45.38; H, 4.95. Found: C, 45.52; H, 5.02.

4.4.3. (*Z*)-3,5-Di-O-acetyl-1-bromo-1,2-dideoxy-4-O-formyl-_Derythro-pent-1-enitol (**11Z**) and (*E*)-3,5-di-O-acetyl-1-bromo-1,2dideoxy-4-O-formyl-_D-erythro-pent-1-enitol (**11E**)

Yield with CrCl₂ 96%, Z/E dr: 3:2. Yield with Sml₂ 72%, Z/E dr: 5:1. Compound **11Z**: oil, $[\alpha]_D$ –1.7 (*c* 0.24); IR 1735 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 2.06 (3H, s), 2.07 (3H, s), 4.17 (1H, dd, J=12.2, 7.4 Hz), 4.26 (1H, dd, J=12.2, 4.0 Hz), 5.50 (1H, ddd, J=7.6, 4.0, 4.0 Hz), 5.91 (1H, dd, J=8.6, 4.0 Hz), 6.18 (1H, dd, J=8.6, 7.7 Hz), 6.54 (1H, d, I=7.7 Hz), 8.10 (1H, s); ¹³C NMR δ_{C} 20.6 (CH₃), 20.7 (CH₃), 61.6 (CH₂), 70.2 (CH), 70.5 (CH), 114.0 (CH), 128.3 (CH), 159.7 (CH), 169.3 (C), 170.4 (C); MS m/z (rel intensity) 251/249 (M⁺-CH₃CO₂, 29/25), 222/220 (15/16), 183 (29), 179/177 (39/39), 162/160 (11/ 13), 141 (46), 81 (100); HRMS *m*/*z* calcd for C₈H⁸¹₁₀BrO₄ 250.9742, found 250.9760. Anal. Calcd for C10H13BrO6: C, 38.86; H, 4.24. Found: C, 38.90; H, 4.11. Compound **11***E*: oil, $[\alpha]_D$ +59.2 (*c* 1.14); IR 1734 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 2.07 (3H, s), 2.08 (3H, s), 4.19 (1H, dd, J=12.2, 6.6 Hz), 4.25 (1H, dd, J=12.2, 3.9 Hz), 5.36 (1H, ddd, J=5.2, 5.2, 4.7 Hz), 5.45 (1H, dd, J=8.0, 4.7 Hz), 6.21 (1H, dd, J=13.8, 8.0 Hz), 6.56 (1H, d, J=13.8 Hz), 8.08 (1H, s); ¹³C NMR $\delta_{\rm C}$ 20.6 (CH₃), 20.8 (CH₃), 61.4 (CH₂), 70.4 (CH), 71.5 (CH), 113.3 (CH), 130.5 (CH), 159.6 (CH), 169.3 (C), 170.4 (C); MS m/z (rel intensity) 251/249 (M⁺-CH₃CO₂, 5/5), 222 (15), 183 (26), 179/177 (30/32), 163/161 (13/13), 141 (43), 81 (100), HRMS m/z calcd for C₈H⁸¹₁₀BrO₄ 250.9742, found 250.9780. Anal. Calcd for C₁₀H₁₃BrO₆: C, 38.86; H, 4.24. Found: C, 38.89; H, 4.13.

4.4.4. (Z)-3,5-Di-O-acetyl-1,2-dideoxy-4-O-formyl-1-iodo-Derythro-pent-1-enitol (**12Z**) and (E)-3,5-di-O-acetyl-1,2-dideoxy-4-O-formyl-1-iodo-D-erythro-pent-1-enitol (**12E**)

Yield with CrCl₂ 90%, *Z*/*E* dr: 3:2. Yield with Sml₂ 77%, *Z*/*E* dr: 5:1. Compound **12Z**: oil, $[\alpha]_D$ –2.8 (*c* 1.35); IR 1736 cm⁻¹; ¹H NMR δ_H 2.07 (6H, s), 4.18 (1H, dd, *J*=12.1, 7.3 Hz), 4.26 (1H, dd, *J*=12.1, 4.0 Hz), 5.49 (1H, ddd, *I*=7.3, 4.2, 4.0 Hz), 5.72 (1H, dd, *I*=8.5, 4.2 Hz), 6.32 (1H, dd, /=8.5, 8.0 Hz), 6.74 (1H, d, /=8.0 Hz), 8.10 (1H, s); ¹³C NMR (125.7 MHz) δ_C 20.69 (CH₃), 20.74 (CH₃), 61.6 (CH₂), 70.4 (CH), 74.3 (CH), 88.5 (CH), 134.4 (CH), 159.7 (CH), 169.3 (C), 170.4 (C); MS *m*/*z* (rel intensity) 356 (M⁺, 1), 229 (<1), 183 (100); HRMS *m*/*z* calcd for C₁₀H₁₃IO₆ 355.9698, found 355.9695. Anal. Calcd for C₁₀H₁₃IO₆: C, 33.73; H, 3.68. Found: C, 33.58; H, 4.07. Compound **12E**: oil, $[\alpha]_D$ +52.5 (*c* 1.14); IR 1734 cm⁻¹; ¹H NMR δ_H 2.07 (3H, s), 2.09 (3H, s), 4.19 (1H, dd, J=12.4, 6.6 Hz), 4.26 (1H, dd, *J*=12.4, 3.8 Hz), 5.34 (1H, ddd, *J*=6.6, 4.6, 3.8 Hz), 5.42 (1H, dd, *J*=7.4, 4.6 Hz), 6.53 (1H, dd, J=14.6, 7.4 Hz), 6.65 (1H, d, J=14.6 Hz), 8.08 (1H, s); 13 C NMR (125.7 MHz) δ_{C} 20.6 (CH₃), 20.8 (CH₃), 61.3 (CH₂), 70.2 (CH), 73.3 (CH), 83.8 (CH), 138.3 (CH), 159.6 (CH), 169.3 (C), 170.4 (C); MS *m*/*z* (rel intensity) 356 (M⁺, <1), 313 (<1), 311 (<1), 229 (<1), 183 (100); HRMS *m*/*z* calcd for C₁₀H₁₃IO₆ 355.9757, found 355.9768. Anal. Calcd for C10H13IO6: C, 33.73; H, 3.68. Found: C, 33.61; H, 3.92.

4.4.5. (*Z*)-3,5-*D*i-O-benzyl-1,2-dideoxy-1-fluoro-4-O-formyl-*D*erythro-pent-1-enitol (**17Z**) and (*E*)-3,5-di-O-benzyl-1,2-dideoxy-1fluoro-4-O-formyl-*D*-erythro-pent-1-enitol (**17E**)

Yield 99%, *Z*/*E* dr: 1:1. Compound **17Z**: oil, [α]_D+24.5 (*c* 0.31); IR 1727 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 3.64 (1H, dd, *J*=10.7, 4.3 Hz), 3.68 (1H, dd, *J*=10.7, 6.0 Hz), 4.41 (1H, d, *J*=11.7 Hz), 4.49 (1H, d, *J*=12.0 Hz), 4.55 (1H, d, *J*=12.0 Hz), 4.59 (1H, d, *J*=11.7 Hz), 4.65 (1H, dd, *J*=9.7, 5.7 Hz), 4.90 (1H, ddd, ³/_{FH}=41.2 Hz, *J*=9.7, 4.8 Hz), 5.30 (1H, ddd, J=5.7, 5.7, 5.7 Hz), 6.70 (1H, dd, ¹J_{FH}=84.0 Hz, J=4.8 Hz), 7.26–7.35 (10H, m), 8.11 (1H, s); ¹³C NMR δ_{C} 68.2 (CH₂), 69.5 (CH, ³ J_{FC} =5.4 Hz), 70.8 (CH₂), 73.1 (CH), 73.3 (CH₂), 108.0 (CH, ²J_{FC}=3.2 Hz), 127.67 (2×CH), 127.74 (2×CH), 127.8 (2×CH), 128.36 (2×CH), 128.39 (2×CH), 137.68 (C), 137.74 (C), 151.3 (CH, ¹*J*_{FC}=264.4 Hz), 160.4 (CH); ¹⁹F NMR $\delta_{\rm F}$ –123.9 (dd, ²J_{FH}=82.6 Hz, ³J_{FH}=41.3 Hz); MS m/z (rel intensity) 344 (M⁺, <1), 253 (<1), 165 (3), 91 (100); HRMS m/z calcd for C₂₀H₂₁FO₄ 344.1424, found 344.1413. Anal. Calcd for C₂₀H₂₁FO₄: C, 69.75; H, 6.15. Found: C, 69.82; H, 6.31. Compound **17E**: oil, [α]_D +18.4 (c 0.51); IR 1727 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 3.63 (1H, dd, J=10.6, 4.3 Hz), 3.70 (1H, dd, *J*=10.6, 5.5 Hz), 4.02 (1H, dd, *J*=9.5, 5.8 Hz), 4.37 (1H, d, J=11.8 Hz), 4.50 (1H, d, J=12.1 Hz), 4.52 (1H, d, *J*=12.0 Hz), 4.60 (1H, d, *J*=11.8 Hz), 5.24 (1H, ddd, *J*=5.8, 5.8, 5.8 Hz), 5.35 (1H, ddd, ${}^{3}J_{FH}$ =17.1 Hz, J=11.3, 9.5 Hz), 6.63 (1H, dd, ¹*J*_{FH}=82.8 Hz, *J*=11.3 Hz), 7.26–7.35 (10H, m), 8.09 (1H, s); ¹³C NMR $\delta_{\rm C}$ 67.8 (CH₂), 70.3 (CH₂), 72.8 (CH, ${}^{3}J_{\rm FC}$ =12.9 Hz), 73.1 (CH, ⁴*J*_{FC}=3.2 Hz), 73.4 (CH₂), 108.5 (CH, ²*J*_{FC}=8.6 Hz), 127.7 (4×CH), 127.8 $(2 \times CH)$, 128.5 (4×CH), 137.5 (C), 137.6 (C), 152.8 (CH, ¹ J_{FC} =264.4 Hz), 160.2 (CH); ¹⁹F NMR δ_F – 121.8 (dd, ²*J*_{FH}=82.6 Hz, ³*J*_{FH}=18.4 Hz); MS *m*/*z* (rel intensity) 344 (M⁺, <1), 253 (<1), 165 (3), 91 (100); HRMS m/z calcd for C₂₀H₂₁FO₄ 344.1424, found 344.1427. Anal. Calcd for C₂₀H₂₁FO₄: C, 69.75; H, 6.15. Found: C, 70.04; H, 5.76.

4.4.6. (Z)-3,5-Di-O-benzyl-1-choro-1,2-dideoxy-4-O-formyl-Derythro-pent-1-enitol (**18Z**) and (E)-3,5-di-O-benzyl-1-choro-1,2dideoxy-4-O-formyl-D-erythro-pent-1-enitol (**18E**)

Yield 80%, *Z/E* dr: 2:1. Compound **18Z**: oil, $[\alpha]_D$ +0.9 (*c* 0.22); IR 1728 cm⁻¹; ¹H NMR δ_H 3.65 (1H, dd, *J*=10.8, 4.1 Hz), 3.68 (1H, dd, *J*=10.8, 6.3 Hz), 4.44 (1H, d, *J*=12.1 Hz), 4.49 (1H, d, *J*=12.1 Hz), 4.56 (1H, d, *J*=11.7 Hz), 4.58 (1H, d, *J*=11.7 Hz), 4.72 (1H, dd, *J*=9.0, 5.4 Hz), 5.34 (1H, ddd, *J*=5.4, 5.4, 5.4 Hz), 5.83 (1H, dd, *J*=9.0, 7.2 Hz), 6.38 (1H, d, *J*=7.2 Hz), 7.27–7.35 (10H, m), 8.10 (1H, s); ¹³C NMR (125.7 MHz) δ_C 68.2 (CH₂), 71.0 (CH₂), 72.6 (CH), 73.0 (CH), 73.3 (CH₂), 123.8 (CH), 127.6–128.4 (10×CH), 128.4 (CH), 137.66 (C), 137.73 (C), 160.3 (CH); MS *m/z* (rel intensity) 271/269 (M⁺-Bn, <1/ <1), 183/181 (1/2), 91 (100); HRMS *m/z* calcd for C₁₃H₁₄³⁷ClO₄ 271.0551, found 271.0557. Anal. Calcd for C₂₀H₂₁ClO₄: C, 66.65; H, 5.88. Found: C, 66.55; H, 6.04. Compound **18E**: oil, $[\alpha]_D$ +29.8 (*c* 0.28); IR 1727 cm⁻¹; ¹H NMR δ_H 3.63 (1H, dd, *J*=10.6, 4.3 Hz), 3.70 (1H, dd, *J*=10.8, 5.8 Hz), 4.11 (1H, dd, *J*=8.7, 5.9 Hz), 4.22 (1H, d, *J*=11.7 Hz), 4.50 (1H, dd, *J*=5.4, 5.4, 5.4 Hz), 5.90 (1H, dd, *J*=13.5, 8.6 Hz), 6.24 (1H, dd, *J*=13.5 Hz), 7.27-7.35 (10H, m), 8.08 (1H, s); ¹³C NMR (125.7 MHz) δ_C 67.7 (CH₂), 70.9 (CH₂), 72.9 (CH), 73.3 (CH₂), 76.1 (CH), 123.4 (CH), 127.7-128.4 (10×CH), 129.8 (CH), 137.4 (C), 137.6 (C), 160.2 (CH); MS *m/z* (rel intensity) 271/269 (M⁺-C₇H₇,<1/ <1), 183/181 (1/2), 91 (100); HRMS *m/z* calcd for C₁₃H₁₄³⁷ClO₄ 271.0551, found 271.0548. Anal. Calcd for C₂₀H₂₁ClO₄: C, 66.65; H, 5.88. Found: C, 66.72; H, 5.97.

4.4.7. (*Z*)-3,5-*D*i-O-benzyl-1-bromo-1,2-dideoxy-4-O-formyl-Derythro-pent-1-enitol (**19Z**) and (*E*)-3,5-di-O-benzyl-1-bromo-1,2dideoxy-4-O-formyl-D-erythro-pent-1-enitol (**19E**)

Yield 81%, Z/E dr: 7:3. Compound 19Z. The isolated vinyl bromide was contaminated with ca. 8% of vinyl iodide 20Z that could not be completely removed by chromatography, nevertheless a small analytical sample was obtained. Oil, IR 1727 cm⁻¹; ¹H NMR δ_H 3.66 (1H, dd, *J*=10.6, 4.4 Hz), 3.69 (1H, dd, *J*=10.5, 5.9 Hz), 4.51 (1H, d, J=11.6 Hz), 4.56 (1H, d, J=11.8 Hz), 4.63 (1H, d, J=11.8 Hz), 4.66 (1H, d, J=11.6 Hz), 4.72 (1H, dd, J=8.9, 5.5 Hz), 5.41 (1H, ddd, *J*=5.5, 5.0, 4.4 Hz), 6.24 (1H, dd, *J*=8.8, 7.4 Hz), 6.61 (1H, d, *J*=7.3 Hz), 7.32–7.41 (10H, m), 8.17 (1H, s); 13 C NMR (125.7 MHz) δ_{C} 68.1 (CH₂), 71.0 (CH₂), 72.9 (CH), 73.3 (CH₂), 75.0 (CH), 113.4 (CH), 127.6-128.4 (10×CH), 131.5 (CH), 137.6 (C), 137.7 (C), 160.3 (CH); MS m/z (rel intensity) 325 (M⁺-Br, <1), 315/313 (<1/<1), 227/225 (1/1), 91 (100); HRMS *m*/*z* calcd for C₂₀H₂₁O₄ 325.1440, found 325.1431. Anal. Calcd for C₂₀H₂₁BrO₄: C, 59.27; H, 5.22. Found: C, 59.25; H, 5.57. Compound 19E. The isolated vinyl bromide was contaminated with ca. 3% of vinyl iodide **20***E* that could not be completely removed by chromatography, nevertheless a small analytical sample was obtained. Oil, IR 1727 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 3.63 (1H, dd, J=10.6, 4.3 Hz), 3.70 (1H, dd, J=10.6, 5.5 Hz), 4.09 (1H, dd, J=8.3, 5.7 Hz), 4.39 (1H, d, J=11.8 Hz), 4.49 (1H, d, J=12.1 Hz), 4.52 (1H, d, J=12.1 Hz), 4.60 (1H, d, J=11.7 Hz), 5.22 (1H, ddd, J=5.2, 5.2, 5.2 Hz), 6.33 (1H, dd, *J*=13.7, 8.3 Hz), 6.36 (1H, d, *J*=13.7 Hz), 7.26–7.35 (10H, m), 8.08 (1H, s); ¹³C NMR (125.7 MHz) δ_C 67.7 (CH₂), 71.0 (CH₂), 72.6 (CH), 73.3 (CH₂), 77.4 (CH), 110.9 (CH), 127.7-128.4 (10×CH), 133.9 (CH), 137.3 (C), 137.6 (C), 160.2 (CH); MS m/z (rel intensity) 325 (M⁺-Br, <1), 315/313 (<1/<1), 227/225 (2/2), 91 (100); HRMS *m*/*z* calcd for $C_{20}H_{21}O_4$ 325.1440, found 325.1451. Anal. Calcd for C₂₀H₂₁BrO₄: C, 59.27; H, 5.22. Found: C, 59.21; H, 5.55.

4.4.8. (Z)-3,5-Di-O-benzyl-1,2-dideoxy-4-O-formyl-1-iodo-Derythro-pent-1-enitol (**20Z**) and (E)-3,5-di-O-benzyl-1,2-dideoxy-4-O-formyl-1-iodo-D-erythro-pent-1-enitol (**20E**)

Yield 81%, *Z/E* dr: 3:1. Compound **20Z**: oil, $[\alpha]_D - 15.8$ (*c* 2.12); IR 1727 cm⁻¹; ¹H NMR δ_H 3.66 (1H, dd, *J*=10.4, 6.4 Hz), 3.70 (1H, dd, *J*=10.6, 5.8 Hz), 4.45 (1H, d, *J*=11.8 Hz), 4.47 (1H, dd, *J*=8.6, 5.9 Hz), 4.50 (1H, d, *J*=12.1 Hz), 4.58 (1H, d, *J*=12.1 Hz), 4.59 (1H, d, *J*=11.8 Hz), 5.35 (1H, ddd, *J*=5.3, 5.3, 5.3 Hz), 6.28 (1H, dd, *J*=8.0, 8.0 Hz), 6.69 (1H, d, *J*=8.0 Hz), 7.28–7.35 (10H, m), 8.10 (1H, s); ¹³C NMR (125.7 MHz) δ_C 68.1 (CH₂), 71.0 (CH₂), 72.8 (CH), 73.3 (CH₂), 79.2 (CH), 87.8 (CH), 127.6–128.4 (10×CH), 137.5 (CH), 137.6 (C), 137.7 (C), 160.3 (CH); MS *m/z* (rel intensity) 361 (M⁺–Bn, <1), 325 (<1), 273 (5), 91 (100); HRMS *m/z* calcd for C₁₃H₁₄IO₄ 360.9937, found 360.9946. Anal. Calcd for C₂₀H₂₁IO₄: C, 53.11; H, 4.68. Found: C, 53.42; H, 4.87. Compound **20E**. The material isolated was contaminated with ca. 20% of the isomer **20Z** that could not be removed chromatographically. Oil, IR 1728 cm⁻¹; ¹H NMR δ_H 3.62 (1H, dd, *J*=10.6, 4.2 Hz), 3.69 (1H, dd, *J*=10.6, 5.6 Hz), 4.06 (1H, dd,

J=7.8, 5.7 Hz), 4.40 (1H, d, *J*=11.8 Hz), 4.50 (2H, s), 4.60 (1H, d, *J*=11.7 Hz), 5.21 (1H, ddd, *J*=5.7, 5.6, 4.2 Hz), 6.43 (1H, d, *J*=14.6 Hz), 6.52 (1H, dd, *J*=14.6, 7.8 Hz), 7.27–7.35 (10H, m), 8.07 (1H, s); ¹³C NMR (125.7 MHz) $\delta_{\rm C}$ 67.6 (CH₂), 71.0 (CH₂), 72.5 (CH), 73.3 (CH₂), 72.4 (CH), 81.5 (CH), 127.5–128.4 (10×CH), 137.7 (2×C), 142.1 (CH), 160.2 (CH); MS *m*/*z* (rel intensity) 361 (M⁺–Bn, <1), 325 (<1), 273 (18), 91 (100). HRMS *m*/*z* calcd for C₁₃H₁₄IO₄ 360.9937, found 360.9953. Anal. Calcd for C₂₀H₂₁IO₄: C, 53.11; H, 4.68. Found: C, 53.28; H, 4.88.

4.4.9. (Z)-5-O-Acetyl-1,2-dideoxy-1-fluoro-4-O-formyl-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-D-erythro-pent-1-enitol (**25Z**) and (E)-5-O-acetyl-1,2-dideoxy-1-fluoro-4-Oformyl-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-Derythro-pent-1-enitol (**25E**)

Yield 79%, Z/E dr: 3:1. Compound 25Z: crystalline solid, mp 121.5–122.2 °C (from *n*-hexane–EtOAc); [*α*]_D +9.2 (*c* 0.62); IR 1749 cm $^{-1};~^{1}\text{H}$ NMR δ_{H} 1.97 (3H, s), 2.03 (3H, s), 2.06 (3H, s), 2.07 (3H, s), 2.14 (3H, s), 3.89 (1H, ddd, J=6.7, 6.7, 0.6 Hz), 4.06 (1H, dd, J=12.1, 7.1 Hz), 4.08 (1H, dd, J=11.6, 4.1 Hz), 4.13 (1H, dd, J=11.3, 6.9 Hz), 4.35 (1H, dd, J=12.1, 3.3 Hz), 4.58 (1H, d, J=8.0 Hz), 4.78 (1H, dd, J=9.2, 5.3 Hz), 5.00 (1H, dd, J=10.5, 3.4 Hz), 5.04 (1H, ddd, ³*J*_{FH}=39.9 Hz, *J*=9.2, 4.3 Hz), 5.18 (1H, dd, *J*=10.5, 8.0 Hz), 5.29 (1H, m), 5.37 (1H, dd, J=3.4, 0.6 Hz), 6.55 (1H, dd, ${}^{2}J_{FH}=83.1$ Hz, J=4.8 Hz), 8.05 (1H, s); ¹³C NMR $\delta_{\rm C}$ 20.5 (CH₃), 20.55 (CH₃), 20.62 (CH₃), 20.64 (CH₃), 20.7 (CH₃), 61.3 (CH₂), 61.8 (CH₂), 67.0 (CH), 68.7 (CH), 70.8 (CH), 71.0 (CH), 71.4 (CH, ⁴J_{FC}=2.2 Hz), 72.1 (CH, ${}^{3}J_{FC}$ =6.4 Hz), 102.0 (CH), 108.3 (CH, ${}^{2}J_{FC}$ =2.1 Hz), 150.2 (CH, ¹J_{FC}=264.4 Hz), 159.7 (CH), 169.4 (C), 170.1 (C), 170.2 (C), 170.37 (C), 170.42 (C); ¹⁹F NMR δ_F – 123.7 (dd, ² J_{FH} =82.6 Hz, ³ J_{FH} =36.7 Hz); MS *m*/*z* (rel intensity) 491 (M⁺–OCHO, <1), 476 (<1), 348 (<1), 331 (19), 189 (100); HRMS *m*/*z* calcd for C₂₁H₂₈FO₁₂ 491.1565, found 491.1560. Anal. Calcd for C₂₂H₂₉FO₁₄: C, 49.26; H, 5.45. Found: C, 49.40; H, 5.32. Compound **25E**: oil, [α]_D+5.7 (*c* 0.14); IR 1736 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.98 (3H, s), 2.05 (3H, s), 2.06 (3H, s), 2.07 (3H, s), 2.16 (3H, s), 3.88 (1H, ddd, *J*=6.8, 6.8, 0.5 Hz), 4.09 (1H, dd, *J*=11.7, 6.0 Hz), 4.09 (1H, dd, J=11.7, 6.0 Hz), 4.14 (1H, dd, J=11.4, 7.2 Hz), 4.24 (1H, dd, J=8.3, 5.2 Hz), 4.38 (1H, dd, J=12.2, 3.1 Hz), 4.55 (1H, d, *J*=7.7 Hz), 5.01 (1H, dd, *J*=10.5, 3.5 Hz), 5.20 (1H, dd, *J*=10.5, 7.9 Hz), 5.22 (1H, m), 5.37 (1H, dd, J=3.5, 0.5 Hz), 5.48 (1H, ddd, ${}^{3}J_{FH}$ =16.8 Hz, J=11.2, 8.3 Hz), 6.75 (1H, dd, ${}^{1}J_{FH}$ =82.0 Hz, J=11.2 Hz), 8.06 (1H, s); ¹³C NMR δ_{C} 20.5 (2×CH₃), 20.6 (2×CH₃), 20.7 (CH₃), 61.5 (CH₂), 61.6 (CH₂), 67.0 (CH), 68.7 (CH), 70.7 (CH), 71.0 (CH), 71.8 (CH, ⁴*J*_{FC}=3.2 Hz), 75.6 (CH, ³*J*_{FC}=12.9 Hz), 101.3 (CH), 108.9 (CH, ²*J*_{FC}=12.9 Hz), 152.7 (CH, ¹*J*_{FC}=264.4 Hz), 159.6 (CH), 169.4 (C), 170.1 (C), 170.2 (C), 170.4 (C), 170.5 (C); $^{19}\mathrm{F}$ NMR δ_F –122.4 (dd, $^{2}J_{FH}$ =82.6 Hz, $^{3}J_{FH}$ =13.8 Hz); MS *m/z* (rel intensity) 491 (M⁺-OCHO, <1), 476 (<1), 431 (<1), 331 (31), 189 (100); HRMS m/z calcd for C₂₁H₂₈FO₁₂ 491.1565, found 491.1559. Anal. Calcd for C₂₂H₂₉FO₁₄: C, 49.26; H, 5.45. Found: C, 49.32; H, 5.54.

4.4.10. (*Z*)-5-O-Acetyl-1-chloro-1,2-dideoxy-4-O-formyl-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-D-erythro-pent-1enitol (**26Z**) and (*E*)-5-O-acetyl-1-chloro-1,2-dideoxy-1-fluoro-4-Oformyl-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-Derythro-pent-1-enitol (**26E**)

Yield 81%, *Z*/*E* dr: 2:1. Compound **26Z**: oil, $[\alpha]_D - 11.7$ (*c* 1.03); IR 1747 cm⁻¹; ¹H NMR δ_H 1.97 (3H, s), 2.03 (3H, s), 2.06 (3H, s), 2.07 (3H, s), 2.13 (3H, s), 3.89 (1H, dd, *J*=6.7, 6.3 Hz), 4.06 (1H, dd, *J*=12.2, 7.2 Hz), 4.07 (1H, dd, *J*=6.5 Hz, not observed), 4.10 (1H, dd, *J*=11.1, 6.9 Hz), 4.34 (1H, dd, *J*=12.1, 3.1 Hz), 4.58 (1H, d, *J*=8.1 Hz), 4.83 (1H, dd, *J*=8.5, 4.9 Hz), 5.00 (1H, dd, *J*=10.8, 3.6 Hz), 5.18 (1H, dd, *J*=10.8, 8.1 Hz), 5.33 (1H, m), 5.37 (1H, d, *J*=3.1 Hz), 5.96 (1H, dd, *J*=8.5, 7.2 Hz), 6.26 (1H, d, *J*=7.2 Hz), 8.05 (1H, s); ¹³C NMR (125.7 MHz) δ_C 20.5 (CH₃), 20.6 (2×CH₃), 20.7 (2×CH₃), 61.3 (CH₂), 61.8 (CH₂), 66.9 (CH), 68.7 (CH), 70.7 (CH), 71.1 (CH), 71.2 (CH), 75.3 (CH), 102.1 (CH), 122.3 (CH), 128.0 (CH), 159.6 (CH), 169.4 (C), 170.0 (C), 170.2 (C), 170.35 (C), 170.39 (C); MS (FAB) *m*/*z* (rel intensity) 577/575 (M⁺+Na, 4/10), 331 (65), 207/205 (7/20); HRMS *m*/*z* calcd for C₂₂H³⁷₂₉ClNaO₁₄ 577.1114, found 577.1093. Anal. Calcd for C22H29ClO14: C, 47.79; H, 5.29. Found: C, 47.52; H, 5.66. Compound 26E. The material isolated was contaminated with ca. 15% starting material 22 that could not be completely removed by chromatography, nevertheless a small analytical sample was obtained. Oil, IR (CHCl₃) 1751 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.98 (3H, s), 2.050 (3H, s), 2.055 (3H, s), 2.07 (3H, s), 2.16 (3H, s), 3.87 (1H, dd, J=6.5, 6.4 Hz), 4.03 (1H, m), 4.106 (1H, d, J=6.4 Hz), 4.109 (1H, d, J=6.7 Hz), 4.31 (1H, dd, J=6.0, 6.0 Hz), 4.35 (1H, dd, J=12.3, 3.2 Hz), 4.55 (1H, d, J=8.1 Hz), 5.00 (1H, dd, J=10.6, 3.5 Hz), 5.19 (1H, dd, J=10.7, 7.9 Hz), 5.22 (1H, m), 5.37 (1H, d, J=3.2 Hz), 5.97 (1H, dd, J=13.3, 7.4 Hz), 6.36 (1H, dd, J=13.3, 1.1 Hz), 8.06 (1H, s); ¹³C NMR (125.7 MHz) δ_{C} 20.5 (CH₃), 20.6 (4×CH₃), 61.4 (2×CH₂), 67.0 (CH), 68.7 (CH), 70.7 (CH), 71.0 (CH), 71.7 (CH), 78.3 (CH), 101.5 (CH), 123.6 (CH), 128.9 (CH), 159.6 (CH), 169.3 (C), 170.0 (C), 170.2 (C), 170.4 (2×C); MS (FAB) m/z (rel intensity) 555/553 $(M^++H, 1/2)$, 331 (2), 207/205 (16/6); HRMS m/z calcd for $C_{22}H_{30}^{37}ClO_{14}$ 555.1295, found 555.1292. Anal. Calcd for C₂₂H₂₉ClO₁₄: C, 47.79; H, 5.29. Found: C, 47.67; H, 5.60.

4.4.11. (Z)-5-O-Acetyl-1-bromo-1,2-dideoxy-4-O-formyl-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-D-erythro-pent-1-enitol (**27Z**) and (E)-5-O-acetyl-1-bromo-1,2-dideoxy-4-Oformyl-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-Derythro-pent-1-enitol (**27E**)

Yield 92%, Z/E dr: 4:1. Compound 27Z. The isolated vinyl bromide was contaminated with ca. 11% of vinyl iodide 28Z that could not be completely removed by chromatography, nevertheless a small analytical sample was obtained. Oil, IR 1747 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.97 (3H, s), 2.03 (3H, s), 2.05 (3H, s), 2.07 (3H, s), 2.13 (3H, s), 3.89 (1H, dd, *J*=6.5, 6.5 Hz), 4.07 (1H, dd, *J*=11.9, 7.3 Hz), 4.10 (1H, d, J=7.2 Hz), 4.11 (1H, d, J=7.3 Hz), 3.84 (1H, dd, J=12.1, 3.3 Hz), 4.59 (1H, d, J=8.0 Hz), 4.56 (1H, dd, J=8.4, 5.0 Hz), 5.0 (1H, dd, J=10.5, 3.3 Hz), 5.18 (1H, dd, J=10.3, 8.0 Hz), 5.34 (1H, ddd, J=7.6, 4.2, 4.2 Hz), 5.36 (1H, d, J=3.5 Hz), 6.26 (1H, dd, J=8.6, 7.4 Hz), 6.42 (1H, d, J=7.3 Hz), 8.05 (1H, s); 13 C NMR (125.7 MHz) δ_{C} 20.5 (CH₃), 20.6 (4×CH₃), 61.2 (CH₂), 61.7 (CH₂), 66.9 (CH), 68.7 (CH), 70.7 (CH), 71.08 (2×CH), 77.7 (CH), 102.1 (CH), 111.8 (CH), 131.1 (CH), 159.6 (CH), 169.4 (C), 170.0 (C), 170.1 (C), 170.3 (C), 170.4 (C); MS (FAB) m/z (rel intensity) 620/618 (M⁺+Na-H, 5/5), 539/537 (1/1), 331 (100), 251/249 (26/26); HRMS *m*/*z* calcd for C₂₂H⁸¹₂₈BrNaO₁₄ 620.0540, found 620.0547. Anal. Calcd for C22H29BrO14: C, 44.23; H, 4.89. Found: C, 44.13; H, 5.07. Compound 27E. The isolated vinyl bromide was contaminated with ca. 8% of vinyl iodide 28E that could not be completely removed by chromatography, nevertheless a small analytical sample was obtained. Oil, IR 1749 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.98 (3H, s), 2.06 (6H, s), 2.07 (3H, s), 2.16 (3H, s), 3.87 (1H, dd, *I*=6.7, 6.7 Hz), 4.10 (1H, m), 4.110 (1H, d, J=6.7 Hz), 4.113 (1H, d, J=6.7 Hz), 4.28 (1H, dd, J=6.1, 5.7 Hz), 4.34 (1H, dd, J=12.6, 3.1 Hz), 4.56 (1H, d, J=8.0 Hz), 5.01 (1H, dd, J=10.3, 3.4 Hz), 5.20 (1H, dd, J=10.5, 7.8 Hz), 5.23 (1H, m), 5.37 (1H, d, J=3.5 Hz), 6.25 (1H, dd, J=13.4, 6.9 Hz), 6.50 (1H, s), 8.06 (1H, s); ¹³C NMR (125.7 MHz) δ_C 20.5 (CH₃), 20.7 (4×CH₃), 61.3 (CH₂), 61.4 (CH₂), 66.9 (CH), 68.7 (CH), 70.6 (CH), 71.0 (CH), 71.4 (CH), 79.6 (CH), 101.5 (CH), 111.1 (CH), 132.9 (CH), 159.6 (CH), 169.4 (C), 170.0 (C), 170.2 (C), 170.4 (2×C); 620/618 (M⁺+Na–H, 4/4), 539/537 (1/1), 331 (100), 251/249 (17/17); HRMS *m*/*z* calcd for C₂₂H⁸¹₂₈BrNaO₁₄ 620.0540, found 620.0547. Anal. Calcd for C₂₂H₂₉BrO₁₄: C, 44.29; H, 4.90. Found: C, 44.03; H, 5.23.

4.4.12. (Z)-5-O-Acetyl-1,2-dideoxy-4-O-formyl-1-iodo-3-O-(2,3,4,6-tetra-O-acetyl- β -D-galactopyranosyl)-D-erythro-pent-1enitol (**28Z**) and (E)-5-O-acetyl-1,2-dideoxy-4-O-formyl-1-iodo-3 $O-(2,3,4,6-tetra-O-acetyl-\beta-D-galactopyranosyl)-D-erythro-pent-1-enitol (28E)$

Yield 93%, Z/E dr: 3:2. Compound 28Z: crystalline solid, mp 99.6–101.6 °C (from *n*-hexane–EtOAc); [α]_D –20.9 (*c* 1.85); IR (neat) 1747 cm $^{-1};~^{1}\text{H}$ NMR δ_{H} 1.97 (3H, s), 2.04 (3H, s), 2.07 (3H, s), 2.08 (3H, s), 2.14 (3H, s), 3.90 (1H, dd, *J*=6.9, 6.5 Hz), 4.07 (1H, dd, *J*=12.1, 7.2 Hz), 4.106 (1H, d, J=6.9 Hz), 4.11 (1H, d, J=6.9 Hz), 4.34 (1H, dd, *I*=12.1, 3.3 Hz), 4.58 (1H, dd, *I*=8.5, 5.2 Hz), 4.61 (1H, d, *I*=8.0 Hz), 5.01 (1H, dd, *J*=10.5, 3.4 Hz), 5.18 (1H, dd, *J*=10.5, 7.9 Hz), 5.34 (1H, ddd, J=7.2, 5.2, 3.3 Hz), 5.37 (1H, d, J=3.4 Hz), 6.36 (1H, dd, J=8.2, 8.1 Hz), 6.57 (1H, d, J=7.9 Hz), 8.05 (1H, s); ¹³C NMR (125.7 MHz) $\delta_{\rm C}$ 20.5 (CH₃), 20.7 (4×CH₃), 61.2 (CH₂), 61.7 (CH₂), 66.9 (CH), 68.7 (CH), 70.7 (CH), 71.1 (2×CH), 82.1 (CH), 86.4 (CH), 102.1 (CH), 137.0 (CH), 159.5 (CH), 169.4 (C), 170.1 (C), 170.2 (C), 170.3 (C), 170.4 (C); MS (FAB) *m*/*z* (rel intensity) 667 (M⁺+Na, 2), 331 (23), 297 (18); HRMS *m*/*z* calcd for C₂₂H₂₉INaO₁₄ 667.0500, found 677.0494. Anal. Calcd for C₂₂H₂₉IO₁₄: C, 41.01; H, 4.54. Found: C, 41.15; H, 4.47. Compound **28E**: oil, $[\alpha]_{\rm D}$ +20 (*c* 0.09); IR 1749 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 1.98 (3H, s), 2.06 (3H, s), 2.07 (3H, s), 2.08 (3H, s), 2.17 (3H, s), 3.72 (1H, dd, J=6.7, 6.0 Hz), 4.09 (1H, dd, J=12.1, 7.1 Hz), 4.11 (2H, d, *J*=6.6 Hz), 4.26 (1H, dd, *J*=4.7, 4.7 Hz), 4.33 (1H, dd, *J*=12.3, 3.1 Hz), 4.56 (1H, d, J=7.8 Hz), 5.00 (1H, dd, J=10.5, 3.4 Hz), 5.20 (1H, dd, J=10.3, 7.9 Hz), 5.22 (1H, ddd, J=7.9, 4.7, 3.1 Hz), 5.37 (1H, d, J=3.3 Hz), 6.58 (1H, d, J=4.6 Hz), 6.59 (1H, s), 8.06 (1H, s); ¹³C NMR (125.7 MHz) δ_C 20.5 (CH₃), 20.7 (3×CH₃), 20.8 (CH₃), 61.3 (CH₂), 61.4 (CH₂), 66.9 (CH), 68.7 (CH), 70.7 (CH), 70.9 (CH), 71.3 (CH), 81.5 (CH), 81.6 (CH), 101.6 (CH), 140.8 (CH), 159.6 (CH), 169.4 (C), 170.1 (C), 170.2 (C), 170.4 (2×C); MS m/z (rel intensity) 644 (M⁺, <1), 584 (<1), 297 (100); HRMS *m*/*z* calcd for C₂₂H₂₉IO₁₄ 644.0602, found 644.0577. Anal. Calcd for C22H29IO14: C, 41.01; H, 4.54. Found: C, 41.36; H, 4.33.

4.4.13. (Z)-3,5-Di-O-acetyl-1,2-dideoxy-1-fluoro-4-O-formyl-Dthreo-pent-1-enitol (**33Z**) and (E)-3,5-di-O-acetyl-1,2-dideoxy-1fluoro-4-O-formyl-D-threo-pent-1-enitol (**33E**)

Yield 84%, *Z*/*E* dr: 1:1. Compound **33Z**: oil, [α]_D+140.7 (*c* 0.17); IR 1744 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 2.06 (6H, s), 4.12 (1H, dd, *J*=12.2, 6.4 Hz), 4.33 (1H, dd, J=12.2, 3.6 Hz), 4.85 (1H, ddd, ³J_{FH}=39.3 Hz, J=9.0, 4.9 Hz), 5.37 (1H, ddd, J=6.4, 6.4, 3.6 Hz), 5.95 (1H, dd, J=9.0, 6.4 Hz), 6.57 (1H, dd, ²*J*_{FH}=81.8 Hz, *J*=4.9 Hz), 8.11 (1H, s); ¹³C NMR $\delta_{\rm C}$ 20.6 (CH₃), 20.8 (CH₃), 61.9 (CH₂), 64.8 (CH, ³J_{FC}=4.6 Hz), 70.9 (CH, ⁴*J*_{FC}=1.8 Hz), 105.8 (CH, ²*J*_{FC}=2.0 Hz), 151.1 (CH, ¹*J*_{FC}=268.8 Hz), 159.8 (CH), 169.4 (C), 170.4 (C); ¹⁹F NMR $\delta_{\rm F}$ – 119.1 (dd, ²J_{FH}=82.8 Hz, ³*J*_{FH}=41.1 Hz); MS *m*/*z* (rel intensity) 247 (M⁺−H, <1), 203 (13), 189 (7), 160 (30), 130 (34), 117 (100); HRMS *m*/*z* calcd for C₁₀H₁₂FO₆ 247.0618, found 247.0625. Anal. Calcd for C₁₀H₁₃FO₆: C, 48.39; H, 5.28. Found: C, 48.10; H, 5.59. Compound **33E**: oil, [α]_D +17.3 (*c* 1.8); IR 1736 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 2.05 (3H, s), 2.06 (3H, s), 4.05 (1H, dd, *J*=12.1, 6.3 Hz), 4.37 (1H, dd, *J*=12.1, 3.9 Hz), 5.35 (2H, m), 5.47 (1H, dd, *J*=9.3, 6.1 Hz), 6.84 (1H, dd, ²*J*_{FH}=81.4 Hz, *J*=11.1 Hz), 8.10 (1H, s); ¹³C NMR δ_{C} 20.6 (CH₃), 20.9 (CH₃), 61.7 (CH₂), 67.4 (CH, ³*J*_{FC}=14.6 Hz), 70.8 (CH, ⁴*J*_{FC}=3.1 Hz), 106.4 (CH, ²*J*_{FC}=13.2 Hz), 154.6 (CH, ${}^{1}J_{FC}$ =266.7 Hz), 159.7 (CH), 169.6 (C), 170.3 (C); ${}^{19}F$ NMR δ_{F} -119.6 (dd, ²J_{FH}=82.8 Hz, ³J_{FH}=15.1 Hz); MS *m*/*z* (rel intensity) 203 (M⁺-HCO₂, 18), 189 (8), 160 (35), 130 (50), 117 (100); HRMS *m*/*z* calcd for C₉H₁₂FO₄ 203.0720, found 203.0672. Anal. Calcd for C₁₀H₁₃FO₆: C, 48.39; H, 5.28. Found: C, 48.30; H, 5.56.

4.4.14. (Z)-3,5-Di-O-acetyl-1-chloro-1,2-dideoxy-4-O-formyl-Dthreo-pent-1-enitol (**34Z**) and (E)-3,5-di-O-acetyl-1-chloro-1,2dideoxy-4-O-formyl-D-threo-pent-1-enitol (**34E**)

Yield 96%, *Z/E* dr: 1:1. Compound **34Z**: oil, $[\alpha]_D$ +36.4 (*c* 0.40); IR 1737 cm⁻¹; ¹H NMR δ_H 2.07 (3H, s), 2.08 (3H, s), 4.10 (1H, dd, *J*=12.1, 6.7 Hz), 4.34 (1H, dd, *J*=12.1, 4.1 Hz), 5.42 (1H, ddd, *J*=5.8, 5.8, 3.6 Hz), 5.74 (1H, dd, *J*=8.5, 7.6 Hz), 6.00 (1H, dd, *J*=8.6, 5.9 Hz), 6.32 (1H, dd, *J*=7.2, 0.9 Hz), 8.10 (1H, s); ¹³C NMR (125.7 MHz) δ_C 20.65 (CH₃), 20.7 (CH₃), 61.8 (CH₂), 67.7 (CH), 70.5 (CH), 124.3 (CH), 125.5 (CH), 159.7 (CH), 169.3 (C), 170.4 (C); MS *m/z* (rel intensity) 229 (M⁺-Cl, 5), 103 (100), HRMS *m/z* calcd for C₁₀H₁₃O₆ 229.0746, found 229.0740. Anal. Calcd for C₁₀H₁₃ClO₆: C, 45.38; H, 4.95. Found: C, 45.41; H, 5.11. Compound **34E**: oil, $[\alpha]_D$ +2.2 (*c* 0.27); IR 1740 cm⁻¹; ¹H NMR δ_H 2.07 (3H, s), 2.09 (3H, s), 4.05 (1H, dd, *J*=12.1, 6.7 Hz), 4.36 (1H, dd, *J*=12.2, 3.6 Hz), 5.33 (1H, ddd, *J*=6.3, 5.9, 3.5 Hz), 5.52 (1H, dd, *J*=7.7, 5.9 Hz), 5.87 (1H, dd, *J*=13.5, 7.7 Hz), 6.42 (1H, d, *J*=13.5 Hz), 8.10 (1H, s); ¹³C NMR (125.7 MHz) δ_C 20.6 (CH₃), 20.8 (CH₃), 61.7 (CH₂), 70.0 (CH), 70.4 (CH), 125.7 (CH), 126.6 (CH), 159.6 (CH), 169.4 (C), 170.3 (C); MS *m/z* calcd for C₁₀H³⁷₁₃ClO₆ 266.0371, found 266.0341. Anal. Calcd for C₁₀H₁₃ClO₆: C, 45.38; H, 4.95. Found: C, 45.31; H, 5.11.

4.4.15. (*Z*)-3,5-Di-O-acetyl-1-bromo-1,2-dideoxy-4-O-formyl-Dthreo-pent-1-enitol (**35Z**) and (*E*)-3,5-di-O-acetyl-1-bromo-1,2dideoxy-4-O-formyl-D-threo-pent-1-enitol (**35E**)

Yield 84%, Z/E dr: 3:2. Compound 35Z. The isolated vinyl bromide was contaminated with ca. 4% of vinyl iodide 36Z that could not be completely removed by chromatography, nevertheless a small analytical sample was obtained. Oil, IR 1740 cm $^{-1};~^{1}\text{H}$ NMR δ_{H} 2.07 (3H, s), 2.08 (3H, s), 4.10 (1H, dd, J=12.1, 6.7 Hz), 4.34 (1H, dd, J=12.1, 3.9 Hz), 5.44 (1H, m), 5.92 (1H, dd, J=8.4, 5.7 Hz), 6.10 (1H, dd, J=8.3, 7.6 Hz), 6.54 (1H, dd, J=7.5, 0.8 Hz), 8.10 (1H, s); ¹³C NMR δ_{C} 20.7 (CH₃), 20.8 (CH₃), 61.8 (CH₂), 69.9 (CH), 70.4 (CH), 113.7 (CH), 128.7 (CH), 159.7 (CH), 169.3 (C), 170.4 (C); MS *m*/*z* (rel intensity) 229 (M⁺-Br, 1), 81 (100); HRMS *m*/*z* calcd for C₁₀H₁₃O₆ 229.0712, found 229.0691. Anal. Calcd for C₁₀H₁₃BrO₆: C, 38.86; H, 4.24. Found: C, 38.81; H, 4.33. Compound 35E. The isolated vinyl bromide was contaminated with ca. 3% of vinyl iodide 36Z that could not be completely removed by chromatography, nevertheless a small analytical sample was obtained. Oil, IR 1736 cm $^{-1};~^{1}\mathrm{H}$ NMR δ_{H} 2.07 (3H, s), 2.10 (3H, s), 4.06 (1H, dd, J=12.1, 6.4 Hz), 4.36 (1H, dd, J=12.1, 4.0 Hz), 5.33 (1H, ddd, J=6.1, 6.1, 6.1 Hz), 5.49 (1H, dd, J=7.2, 6.1 Hz), 6.15 (1H, dd, J=13.7, 7.6 Hz), 6.56 (1H, d, J=13.7 Hz), 8.10 (1H, s); ¹³C NMR (125.7 MHz) $\delta_{\rm C}$ 20.6 (CH₃), 20.8 (CH₃), 61.6 (CH₂), 70.1 (CH), 71.3 (CH), 113.2 (CH), 130.6 (CH), 159.5 (CH), 169.4 (C), 170.3 (C); MS m/z (rel intensity) 229 $(M^+-Br, 2)$, 81 (100); HRMS m/z calcd for $C_{10}H_{13}O_6$ 229.0712, found 229.0681. Anal. Calcd for C10H13BrO6: C, 38.86; H, 4.24. Found: C, 39.03; H, 4.35.

4.4.16. (Z)-3,5-Di-O-acetyl-1,2-dideoxy-4-O-formyl-1-iodo-Dthreo-pent-1-enitol (**36Z**) and (E)-3,5-di-O-acetyl-1,2-dideoxy-4-O-formyl-1-iodo-D-threo-pent-1-enitol (**36E**)

Yield 90%, Z/E dr: 1:1. Compound 36Z: crystalline solid, mp 45.9–47.5 °C (from *n*-hexane–EtOAc); $[\alpha]_{D}$ +51.6 (*c* 1.12); IR 1740 cm $^{-1};~^1\!H$ NMR δ_H 2.069 (3H, s), 2.072 (3H, s), 4.09 (1H, dd, *I*=12.0, 6.7 Hz), 4.34 (1H, dd, *I*=12.0, 3.9 Hz), 5.44 (1H, ddd, *I*=6.7, 5.8, 3.9 Hz), 5.72 (1H, dd, J=8.3, 5.8 Hz), 6.24 (1H, dd, J=8.2, 8.2 Hz), 6.70 (1H, d, J=8.0 Hz), 8.09 (1H, s); ¹³C NMR (125.7 MHz) $\delta_{\rm C}$ 20.67 (CH₃), 20.74 (CH₃), 61.7 (CH₂), 70.2 (CH), 74.1 (CH), 88.1 (CH), 134.7 (CH), 159.7 (C), 169.3 (C), 170.4 (C); MS m/z (rel intensity) 357 $(M^++H, 3)$, 356 $(M^+, 1)$, 311 (15), 297 (80), 183 (100); HRMS m/zcalcd for C10H13IO₆ 355.9757, found 355.9794. Anal. Calcd for C₁₀H₁₃IO₆: C, 33.73; H, 3.68. Found: C, 33.86; H, 3.66. Compound **36E**: oil, $[\alpha]_D$ – 14.2 (*c* 0.94); IR 1739 cm⁻¹; ¹H NMR δ_H 2.07 (3H, s), 2.10 (3H, s), 4.05 (1H, dd, J=12.1, 6.3 Hz), 4.35 (1H, dd, J=12.1, 4.0 Hz), 5.33 (1H, ddd, J=6.3, 6.2, 4.0 Hz), 5.45 (1H, dd, J=6.4, 6.2 Hz), 6.48 (1H, dd, J=14.6, 7.0 Hz), 6.64 (1H, d, J=14.6 Hz), 8.09 (1H, s). 13 C NMR (125.7 MHz) δ_{C} 20.6 (CH₃), 20.7 (CH₃), 61.6 (CH₂), 69.9 (CH), 73.0 (CH), 83.4 (CH), 138.4 (CH), 159.6 (CH), 169.3 (C), 170.3 (C); MS m/z (rel intensity) 356 (M⁺, 1), 310 (3), 297 (3), 229 (<1), 183 (100); HRMS *m*/*z* calcd for C₁₀H₁₃IO₆ 355.9757, found 355.9770. Anal. Calcd for $C_{10}H_{13}IO_6$: C, 33.73; H, 3.68. Found: C, 33.62; H, 3.67.

4.4.17. (*Z*)-3,5-O-Benzylidene-1,2-dideoxy-4-O-formyl-1-iodo-*D*erythro-pent-1-enitol (**40Z**) and (*E*)-3,5-O-benzylidene-1,2dideoxy-4-O-formyl-1-iodo-*D*-erythro-pent-1-enitol (**40E**)

Yield 91%. Z/E dr: 3:2. Compound **40Z**: crystalline solid. mp 73.9–74.6 °C (from *n*-hexane–AcOEt); [α]_D –60.5 (*c* 0.81); IR 1733 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 3.84 (1H, dd, *J*=10.5, 10.5 Hz), 4.41 (1H, dd, /=10.8, 5.3 Hz), 4.65 (1H, dd, /=8.9, 8.8 Hz), 5.14 (1H, ddd, *J*=9.9, 9.8, 5.6 Hz), 5.64 (1H, s), 6.36 (1H, dd, *J*=8.0, 8.0 Hz), 6.66 $(1H, d, I=8.0 \text{ Hz}), 7.38 (3H, m), 7.51 (2H, m), 8.04 (1H, s); {}^{13}\text{C}$ NMR (125.7 MHz) δ_C 64.8 (CH), 67.7 (CH₂), 81.1 (CH), 87.8 (CH), 101.2 (CH), 126.1 (2×CH), 128.3 (2×CH), 129.3 (CH), 136.8 (C), 140.5 (CH), 159.4 (CH); MS m/z (rel intensity) 360 (M⁺, <1), 314 (4), 233 (<1), 208 (7), 107 (100); HRMS m/z calcd for $C_{13}H_{13}IO_4$ 359.9859, found 359.9840. Anal. Calcd for C13H13IO4: C, 43.36; H, 3.64. Found: C, 43.55; H, 3.48. Compound 40E: crystalline solid, mp 100.2–100.6 °C (from *n*-hexane–AcOEt); [α]_D +11.6 (*c* 0.51); IR 1735 cm⁻¹; ¹H NMR $\delta_{\rm H}$ 3.70 (1H, dd, *J*=10.5, 10.5 Hz), 4.28 (1H, dd, J=9.6, 2.4 Hz), 4.44 (1H, dd, J=10.8, 5.3 Hz), 4.93 (1H, ddd, J=10.0, 9.6, 5.4 Hz), 5.56 (1H, s), 6.63 (1H, d, J=2.2 Hz), 6.64 (1H, s), 7.39 (3H, m), 7.49 (2H, m), 8.05 (1H, s); ¹³C NMR (125.7 MHz) δ_{C} 65.7 (CH), 67.7 (CH₂), 80.7 (CH), 81.8 (CH), 101.3 (CH), 126.2 (2×CH), 128.3 (2×CH), 129.4 (CH), 136.8 (C), 140.5 (CH), 159.3 (CH); MS *m*/*z* (rel intensity) 360 (M⁺, <1), 314 (4), 233 (<1), 208 (2), 107 (100); HRMS m/z calcd for C₁₃H₁₃IO₄ 359.9859, found 359.9845. Anal. Calcd for C13H13IO4: C, 43.36; H, 3.64. Found: C. 43.42: H. 3.53.

4.4.18. 5-O-[tert-Butyl(dimethyl)silyl]-1,2-dideoxy-4-O-formyl-1iodo-D-threo-pent-1-enitol (**42EZ**) and 5-O-[tert-butyl(dimethyl) silyl]-1,2-dideoxy-3-O-formyl-1-iodo-D-threo-pent-1-enitol (**43EZ**)

Yield 85%, Z/E dr: 3:7, the four products were isolated as two mixtures (42E, 43E and 42Z, 43Z) that could not be separated. Inseparable mixture of compounds **42E** and **43E** (71%, 68:32): IR 3611, 3468, 1727 cm⁻¹; MS *m/z* (rel intensity) 387 (M⁺+H, 5), 341 (3), 73 (100); HRMS *m*/*z* calcd for C₁₂H₂₃IO₄Si 387.0489, found 387.0466. Anal. Calcd for C₁₂H₂₃IO₄Si: C, 37.31; H, 6.00. Found: C, 37.34; H, 6.04. Compound **42E**: ¹H NMR $\delta_{\rm H}$ –0.07 (3H, s), –0.06 (3H, s), 0.86 (9H, s), 2.06 (1H, br s), 3.47 (1H, dd, J=11.0, 4.9 Hz), 3.57 (1H, dd, J=11.0, 4.8 Hz), 3.99 (1H, dd, *J*=4.6, 4.6 Hz), 4.76 (1H, ddd, *J*=4.8, 4.8, 4.8 Hz), 6.24 (1H, d, J=14.5 Hz), 6.36 (1H, dd, J=14.4, 5.2 Hz), 7.50 (1H, s); ¹³C NMR (125.7 MHz) δ_{C} –5.5 (2×CH₃), 18.3 (C), 25.9 (3×CH₃), 62.0 (CH₂), 73.3 (CH), 74.6 (CH), 79.1 (CH), 144.3 (CH), 159.9 (CH). Compound **43E**: ¹H NMR $\delta_{\rm H}$ –0.07 (3H, s), –0.06 (3H, s), 0.86 (9H, s), 2.06 (1H, br s), 3.33 (2H, d, J=4.2 Hz), 3.37 (1H, ddd, J=6.3, 4.2, 4.2 Hz), 5.34 (1H, dd, *J*=7.0, 6.3 Hz), 6.29 (1H, d, *J*=14.6 Hz), 6.42 (1H, dd, J=14.6, 7.4 Hz), 7.46 (1H, s); ¹³C NMR (125.7 MHz) $\delta_{\rm C} - 5.5$ (2×CH₃), 18.3 (C), 25.9 (3×CH₃), 63.2 (CH₂), 72.1 (CH), 75.3 (CH), 82.5 (CH), 140.5 (CH), 159.4 (C). Inseparable mixture of compounds 42Z and **43Z** (14%, 57:43): IR 3592, 3468, 1727 cm⁻¹; MS (FAB) *m*/*z* (rel intensity) 409 (M⁺+Na, 1), 391 (4). Anal. Calcd for C₁₂H₂₃IO₄Si: C, 37.31; H, 6.00. Found: C, 37.63; H, 5.71. Compound **42Z**: ¹H NMR $\delta_{\rm H}$ -0.05 to 0.10 (6H, s), 0.91 (9H, s), 2.86 (1H, d, J=4.6 Hz), 3.89 (1H, dd, J=11.0, 3.7 Hz), 3.93 (1H, dd, J=11.0, 5.0 Hz), 4.74 (1H, ddd, J=7.8, 4.6, 3.4 Hz), 5.04 (1H, ddd, J=4.9, 3.7, 3.4 Hz), 6.35 (1H, dd, J=7.8, 7.8 Hz), 6.51 (1H, d, J=7.8 Hz), 8.14 (1H, s); ¹³C NMR (125.7 MHz) $\delta_{\rm C}$ –5.5 to -5.4 (2×CH₃), 18.2 (C), 25.8 (3×CH₃), 62.4 (CH₂), 74.0 (CH), 74.4 (CH), 84.7 (CH), 139.1 (CH), 160.4 (CH). Compound **43Z**: ¹H NMR $\delta_{\rm H}$ -0.05 to 0.10 (6H, s), 0.91 (9H, s), 2.50 (1H, d, J=6.5 Hz), 3.67 (1H, dd, *J*=10.2, 5.9 Hz), 3.69 (1H, dd, *J*=10.2, 4.8 Hz), 3.86 (1H, dddd, *J*=6.5, 5.9, 4.8, 4.8 Hz), 5.68 (1H, dd, J=8.3, 4.8 Hz), 6.42 (1H, dd, J=8.2, 8.1 Hz), 6.65 (1H, d, J=8.0 Hz), 8.12 (1H, s); 13 C NMR (125.7 MHz) δ_{C} -5.5 to -5.4 (2×CH₃), 18.2 (C), 25.8 (3×CH₃), 63.0 (CH₂), 72.2 (CH), 76.2 (CH), 86.6 (CH), 136.2 (CH), 159.9 (C).

4.4.19. (Z,E)-3-O-Acetyl-1,2-dideoxy-4-O-formyl-1-iodo-*D*-glycero-tetra-1-enitol (**45ZE**)

Yield 86%, *Z/E* dr: 3:2. Inseparable mixture of compounds **45***Z* and **45***E*: Oil, IR 1732 cm⁻¹; MS *m/z* (rel intensity) 284 (M⁺, 7), 238 (1), 225 (41), 196 (58), 111 (100); HRMS *m/z* calcd for C₇H₉IO₄ 283.9546, found 283.9565. Anal. Calcd for C₇H₉IO₄: C, 29.60; H, 3.19. Found: C, 29.77; H, 3.16. Compound **45***Z*: ¹H NMR $\delta_{\rm H}$ 2.10 (3H, s), 4.28 (1H, dd, *J*=11.9, 6.2 Hz), 4.38 (1H, dd, *J*=11.9, 3.6 Hz), 5.71 (1H, ddd, *J*=7.9, 6.2, 3.6 Hz), 6.33 (1H, dd, *J*=7.9, 7.9 Hz), 6.64 (1H, d, *J*=8.0 Hz), 8.08 (1H, s); ¹³C NMR (50.3 MHz) $\delta_{\rm C}$ 20.8 (CH₃), 62.9 (CH₂), 74.0 (CH), 86.5 (CH), 135.5 (CH), 160.3 (CH), 169.7 (C). Compound **45***E*: ¹H NMR $\delta_{\rm H}$ 2.10 (3H, s), 4.18 (1H, dd, *J*=11.8, 6.5 Hz), 4.32 (1H, dd, *J*=11.9, 4.0 Hz), 5.40 (1H, dd, *J*=6.6, 6.6, 3.9 Hz), 6.52 (1H, dd, *J*=14.6, 6.7 Hz), 6.62 (1H, d, *J*=14.6 Hz), 8.04 (1H, s); ¹³C NMR (50.3 MHz) $\delta_{\rm C}$ 20.8 (CH₃), 63.1 (CH₂), 72.6 (CH), 82.6 (CH), 139.2 (CH), 160.3 (CH), 169.7 (C).

Acknowledgements

This work was supported by the Investigation Programmes nos. CTQ2004-06381 and CTQ2007-67492/BQU of the Dirección General de Investigación Científica y Técnica, Spain. C.R.-F. thanks the Dirección General de Investigación del Gobierno de Canarias for a fellowship. N.R.P. thanks the Program I3P-CSIC for a fellowship. The helpful suggestions of Professor José M. Concellón (University of Oviedo) regarding the SmI₂ experiments are gratefully acknowledged.

References and notes

- Stanforth, S. P. In Comprehensive Organic Functional Group Transformations II; Katritzky, A. R., Taylor, R. J., Eds.; Elsevier: Oxford, 2005; Vol. 2, p 1025.
- (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4442–4489; (b) Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; (c) Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley In-

terscience: New York, NY, 2002; (d) Kohei, T.; Miyaura, N. Top. Curr. Chem. 2002, 219, 1-9.

- (a) Barluenga, J.; Moriel, P.; Aznar, F.; Valdés, C. Org. Lett. 2007, 9, 275–278; (b) Delhi, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973–986.
- (a) Stanforth, S. P. In Comprehensive Organic Functional Group Transformations II; Katritzky, A. R., Taylor, R. J., Eds.; Elsevier: Oxford, 2005; Vol. 2, p 561; (b) van Steenis, J. H.; van der Gen, A. J. Chem. Soc., Perkin Trans. 1 2002, 2117–2133; (c) Maryanoff, B. E. Chem. Rev. 1989, 89, 863–927.
- (a) Kim, K.-M.; Park, I.-H. Synthesis 2004, 2641–2644; (b) Barluenga, J.; Campos, P. J.; González, J. M.; Suárez, J. L. J. Org. Chem. 1991, 56, 2234–2237; (c) Bandodakar, B. S.; Nagendrappa, G. Synthesis 1990, 843–844; (d) Grattan, T. J.; Whitehurst, J. S.J. Chem. Soc., Perkin Trans. 1 1990, 11–18; (e) Croft, A. P.; Bartsch, R. A. J. Org. Chem. 1983, 48, 876–879; (f) Tremmling, M. J.; Hopper, S. P.; Mendelowitz, P. L. J. Org. Chem. 1978, 43, 3076–3077; (g) Eckes, L.; Hanack, M. Synthesis 1978, 217–219; (h) Strobach, D. R.; Boswell, G. A.J. Org. Chem. 1971, 36, 818– 820; (i) Erickson, K. L.; Markstein, J.; Kim, K. J. Org. Chem. 1971, 36, 1024–1030; (j) Hoff, M. C.; Greenlee, W.; Boord, C. E. J. Am. Chem. Soc. 1951, 73, 3329–3336.
- (a) Dolbier, W. R., Jr.; Alty, A. C.; Phanstiel, O., IV. J. Am. Chem. Soc. 1987, 109, 3046–3050;
 (b) Daub, G. W.; Zuckermann, R. N.; Johnson, W. S. J. Org. Chem. 1985, 50, 1599–1602;
 (c) Bergmann, F.; Kalmus, A.; Breuer, E. J. Am. Chem. Soc. 1958, 40, 4540–4543.
- (a) Concellón, J. M.; Rodríguez-Solla, H. Chem. Soc. Rev. 2004, 33, 599–609; (b) Concellón, J. M.; Rodríguez-Solla, H.; Huerta, M.; Pérez-Andrés, J. A. Eur. J. Org. Chem. 2002, 1839–1847; (c) Concellón, J. M.; Bernard, P. L.; Pérez-Andrés, J. A. Angew. Chem., Int. Ed. 1999, 38, 2384–2386.
- (a) Ram, R. N.; Manjot, T. P. Org. Lett. 2008, 11, 2243–2246; (b) Bejot, R.; Tisserand, S.; Reddy, L. M.; Barma, D. K.; Baati, R.; Falck, J. R.; Mioskowski, C. Angew. Chem., Int. Ed. 2005, 44, 2008–2011; (c) Nakagawa, M.; Saito, A.; Yamamoto, N.; Taguchi, T. Tetrahedron Lett. 2005, 46, 5257–5261; (d) Baati, R.; Barma, D. K.; Krishna, U. M.; Falck, J. R.; Mioskowski, C. Tetrahedron Lett. 2002, 43, 959–961; (e) Baati, R.; Barma, D. K.; Falck, J. R.; Mioskowski, C. J. Am. Chem. Soc. 2001, 123, 9196–9197.
- (a) González, C. C.; Kennedy, A. R.; León, E. I.; Riesco-Fagundo, C.; Suárez, E. *Chem.—Eur. J.* 2003, 9, 5800–5809; (b) González, C. C.; Kennedy, A. R.; León, E. I.; Riesco-Fagundo, C.; Suárez. *Tetrahedron Lett.* 2003, 44, 6347–6350; (c) González, C. C.; Kennedy, A. R.; León, E. I.; Riesco-Fagundo, C.; Suárez, E. Angew. *Chem., Int. Ed.* 2001, 113, 2388–2390.
- Concellón, J. M.; Rodríguez-Solla, H.; Bardales, E.; Huerta, M. Eur. J. Org. Chem. 2003, 1775–1778.
- (a) Fürstner, A. Chem. Rev. 1999, 99, 991–1045; (b) Takai, K.; Kataoka, Y.; Okazoe, T.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 951–953; (c) Takai, K.; Utimoto, K.; Nitta, K. J. Am. Chem. Soc. 1986, 108, 7408–7410.
- (a) Takai, K.; Kokumai, R.; Nobunaka, T. Chem. Commun. 2001, 1128–1129; (b) Wolf, R.; Steckhan, E. J. Chem. Soc., Perkin Trans. 1 1986, 733–739.
- 13. Hiyama, T. Organofluorine Compounds: Chemistry and Applications; Springer: Berlin, 2000.